000 | 03229nam a22003975i 4500 | ||
---|---|---|---|
001 | 310018 | ||
003 | MX-SnUAN | ||
005 | 20160429160337.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2007 sz | o |||| 0|eng d | ||
020 |
_a9783764379506 _99783764379506 |
||
024 | 7 |
_a10.1007/9783764379506 _2doi |
|
035 | _avtls000362843 | ||
039 | 9 |
_a201509030649 _bVLOAD _c201405070335 _dVLOAD _y201402211059 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA174-183 | |
100 | 1 |
_aBrady, Noel. _eautor _9350556 |
|
245 | 1 | 4 |
_aThe Geometry of the Word Problem for Finitely Generated Groups / _cby Noel Brady, Tim Riley, Hamish Short. |
264 | 1 |
_aBasel : _bBirkhäuser Basel, _c2007. |
|
300 |
_avii, 206 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 | _aAdvanced Courses in Mathematics CRM Barcelona, Centre de Recerca Matemàtica | |
500 | _aSpringer eBooks | ||
505 | 0 | _aDehn Functions and Non-Positive Curvature -- The Isoperimetric Spectrum -- Dehn Functions of Subgroups of CAT(0) Groups -- Filling Functions -- Filling Functions -- Relationships Between Filling Functions -- Example: Nilpotent Groups -- Asymptotic Cones -- Diagrams and Groups -- Dehn’s Problems and Cayley Graphs -- Van Kampen Diagrams and Pictures -- Small Cancellation Conditions -- Isoperimetric Inequalities and Quasi-Isometries -- Free Nilpotent Groups -- Hyperbolic-by-free groups. | |
520 | _aThe origins of the word problem are in group theory, decidability and complexity, but, through the vision of M. Gromov and the language of filling functions, the topic now impacts the world of large-scale geometry, including topics such as soap films, isoperimetry, coarse invariants and curvature. The first part introduces van Kampen diagrams in Cayley graphs of finitely generated, infinite groups; it discusses the van Kampen lemma, the isoperimetric functions or Dehn functions, the theory of small cancellation groups and an introduction to hyperbolic groups. One of the main tools in geometric group theory is the study of spaces, in particular geodesic spaces and manifolds, such that the groups act upon. The second part is thus dedicated to Dehn functions, negatively curved groups, in particular, CAT(0) groups, cubings and cubical complexes. In the last part, filling functions are presented from geometric, algebraic and algorithmic points of view; it is discussed how filling functions interact, and applications to nilpotent groups, hyperbolic groups and asymptotic cones are given. Many examples and open problems are included. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aRiley, Tim. _eautor _9350557 |
|
700 | 1 |
_aShort, Hamish. _eautor _9350558 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783764379490 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-7643-7950-6 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c310018 _d310018 |