000 03229nam a22003975i 4500
001 310018
003 MX-SnUAN
005 20160429160337.0
007 cr nn 008mamaa
008 150903s2007 sz | o |||| 0|eng d
020 _a9783764379506
_99783764379506
024 7 _a10.1007/9783764379506
_2doi
035 _avtls000362843
039 9 _a201509030649
_bVLOAD
_c201405070335
_dVLOAD
_y201402211059
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA174-183
100 1 _aBrady, Noel.
_eautor
_9350556
245 1 4 _aThe Geometry of the Word Problem for Finitely Generated Groups /
_cby Noel Brady, Tim Riley, Hamish Short.
264 1 _aBasel :
_bBirkhäuser Basel,
_c2007.
300 _avii, 206 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aAdvanced Courses in Mathematics CRM Barcelona, Centre de Recerca Matemàtica
500 _aSpringer eBooks
505 0 _aDehn Functions and Non-Positive Curvature -- The Isoperimetric Spectrum -- Dehn Functions of Subgroups of CAT(0) Groups -- Filling Functions -- Filling Functions -- Relationships Between Filling Functions -- Example: Nilpotent Groups -- Asymptotic Cones -- Diagrams and Groups -- Dehn’s Problems and Cayley Graphs -- Van Kampen Diagrams and Pictures -- Small Cancellation Conditions -- Isoperimetric Inequalities and Quasi-Isometries -- Free Nilpotent Groups -- Hyperbolic-by-free groups.
520 _aThe origins of the word problem are in group theory, decidability and complexity, but, through the vision of M. Gromov and the language of filling functions, the topic now impacts the world of large-scale geometry, including topics such as soap films, isoperimetry, coarse invariants and curvature. The first part introduces van Kampen diagrams in Cayley graphs of finitely generated, infinite groups; it discusses the van Kampen lemma, the isoperimetric functions or Dehn functions, the theory of small cancellation groups and an introduction to hyperbolic groups. One of the main tools in geometric group theory is the study of spaces, in particular geodesic spaces and manifolds, such that the groups act upon. The second part is thus dedicated to Dehn functions, negatively curved groups, in particular, CAT(0) groups, cubings and cubical complexes. In the last part, filling functions are presented from geometric, algebraic and algorithmic points of view; it is discussed how filling functions interact, and applications to nilpotent groups, hyperbolic groups and asymptotic cones are given. Many examples and open problems are included.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aRiley, Tim.
_eautor
_9350557
700 1 _aShort, Hamish.
_eautor
_9350558
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783764379490
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-7643-7950-6
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c310018
_d310018