000 | 03132nam a22003975i 4500 | ||
---|---|---|---|
001 | 310095 | ||
003 | MX-SnUAN | ||
005 | 20160429160341.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2005 sz | o |||| 0|eng d | ||
020 |
_a9783764373092 _99783764373092 |
||
024 | 7 |
_a10.1007/b137080 _2doi |
|
035 | _avtls000362684 | ||
039 | 9 |
_a201509031114 _bVLOAD _c201405070505 _dVLOAD _y201402211055 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA312-312.5 | |
100 | 1 |
_aAmbrosio, Luigi. _eautor _9334143 |
|
245 | 1 | 0 |
_aGradient Flows : _bin Metric Spaces and in the Space of Probability Measures / _cby Luigi Ambrosio, Nicola Gigli, Giuseppe Savaré. |
264 | 1 |
_aBasel : _bBirkhäuser Basel, _c2005. |
|
300 |
_avii, 333 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 | _aLectures in Mathematics ETH Zürich | |
500 | _aSpringer eBooks | ||
505 | 0 | _aGradient Flow in Metric Spaces -- Curves and Gradients in Metric Spaces -- Existence of Curves of Maximal Slope and their Variational Approximation -- Proofs of the Convergence Theorems -- Uniqueness, Generation of Contraction Semigroups, Error Estimates -- Notation -- Gradient Flow in the Space of Probability Measures -- Preliminary Results on Measure Theory -- The Optimal Transportation Problem -- The Wasserstein Distance and its Behaviour along Geodesics -- Absolutely Continuous Curves in Pp(X) and the Continuity Equation -- Convex Functionals in Pp(X) -- Metric Slope and Subdifferential Calculus in Pp(X) -- Gradient Flows and Curves of Maximal Slope in Pp(X). | |
520 | _aThis book is devoted to a theory of gradient flows in spaces which are not necessarily endowed with a natural linear or differentiable structure. It consists of two parts, the first one concerning gradient flows in metric spaces and the second one devoted to gradient flows in the space of probability measures on a separable Hilbert space, endowed with the Kantorovich-Rubinstein-Wasserstein distance. The two parts have some connections, due to the fact that the space of probability measures provides an important model to which the "metric" theory applies, but the book is conceived in such a way that the two parts can be read independently, the first one by the reader more interested in non-smooth analysis and analysis in metric spaces, and the second one by the reader more orientated towards the applications in partial differential equations, measure theory and probability. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aGigli, Nicola. _eautor _9350278 |
|
700 | 1 |
_aSavaré, Giuseppe. _eautor _9350279 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783764324285 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/b137080 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c310095 _d310095 |