000 | 03331nam a22003855i 4500 | ||
---|---|---|---|
001 | 310142 | ||
003 | MX-SnUAN | ||
005 | 20190830083024.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2007 sz | o |||| 0|eng d | ||
020 |
_a9783764384012 _99783764384012 |
||
024 | 7 |
_a10.1007/9783764384012 _2doi |
|
035 | _avtls000362894 | ||
039 | 9 |
_a201509031020 _bVLOAD _c201405070335 _dVLOAD _y201402211134 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA319-329.9 | |
100 | 1 |
_9216470 _aLópez Gómez, Javier _eautor |
|
245 | 1 | 0 |
_aAlgebraic Multiplicity of Eigenvalues of Linear Operators / _cby J. López-Gómez, C. Mora-Corral. |
264 | 1 |
_aBasel : _bBirkhäuser Basel, _c2007. |
|
300 |
_axii, 310 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aOperator Theory: Advances and Applications ; _v177 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aFinite-dimensional Classic Spectral Theory -- The Jordan Theorem -- Operator Calculus -- Spectral Projections -- Algebraic Multiplicities -- Algebraic Multiplicity Through Transversalization -- Algebraic Multiplicity Through Polynomial Factorization -- Uniqueness of the Algebraic Multiplicity -- Algebraic Multiplicity Through Jordan Chains. Smith Form -- Analytic and Classical Families. Stability -- Algebraic Multiplicity Through Logarithmic Residues -- The Spectral Theorem for Matrix Polynomials -- Further Developments of the Algebraic Multiplicity -- Nonlinear Spectral Theory -- Nonlinear Eigenvalues. | |
520 | _aThis book brings together all the most important known results of research into the theory of algebraic multiplicities, from well-known classics like the Jordan Theorem to recent developments such as the uniqueness theorem and the construction of multiplicity for non-analytic families, which is presented in this monograph for the first time. Part I (the first three chapters) is a classic course on finite-dimensional spectral theory; Part II (the next eight chapters) contains the most general results available about the existence and uniqueness of algebraic multiplicities for real non-analytic operator matrices and families; and Part III (the last chapter) transfers these results from linear to nonlinear analysis. The text is as self-contained as possible. All the results are established in a finite-dimensional setting, if necessary. Furthermore, the structure and style of the book make it easy to access some of the most important and recent developments. Thus the material appeals to a broad audience, ranging from advanced undergraduates (in particular Part I) to graduates, postgraduates and reseachers who will enjoy the latest developments in the real non-analytic case (Part II). | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aMora-Corral, C. _eautor _9350733 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783764384005 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-7643-8401-2 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c310142 _d310142 |