000 03163nam a22003735i 4500
001 310167
003 MX-SnUAN
005 20160429160345.0
007 cr nn 008mamaa
008 150903s2005 sz | o |||| 0|eng d
020 _a9783764373153
_99783764373153
024 7 _a10.1007/b137100
_2doi
035 _avtls000362688
039 9 _a201509031114
_bVLOAD
_c201405070505
_dVLOAD
_y201402211055
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA612-612.8
100 1 _aKreck, Matthias.
_eautor
_9350768
245 1 4 _aThe Novikov Conjecture :
_bGeometry and Algebra /
_cby Matthias Kreck, Wolfgang Lück.
264 1 _aBasel :
_bBirkhäuser Basel,
_c2005.
300 _axv, 266 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aA Motivating Problem -- to the Novikov and the Borel Conjecture -- Normal Bordism Groups -- The Signature -- The Signature Theorem and the Novikov Conjecture -- The Projective Class Group and the Whitehead Group -- Whitehead Torsion -- The Statement and Consequences of the s-Cobordism Theorem -- Sketch of the Proof of the s-Cobordism Theorem -- From the Novikov Conjecture to Surgery -- Surgery Below the Middle Dimension I: An Example -- Surgery Below the Middle Dimension II: Systematically -- Surgery in the Middle Dimension I -- Surgery in the Middle Dimension II -- Surgery in the Middle Dimension III -- An Assembly Map -- The Novikov Conjecture for ?n -- Poincaré Duality and Algebraic L-Groups -- Spectra -- Classifying Spaces of Families -- Equivariant Homology Theories and the Meta-Conjecture -- The Farrell-Jones Conjecture -- The Baum-Connes Conjecture -- Relating the Novikov, the Farrell-Jones and the Baum-Connes Conjectures -- Miscellaneous -- Exercises -- Hints to the Solutions of the Exercises.
520 _aThese lecture notes contain a guided tour to the Novikov Conjecture and related conjectures due to Baum-Connes, Borel and Farrell-Jones. They begin with basics about higher signatures, Whitehead torsion and the s-Cobordism Theorem. Then an introduction to surgery theory and a version of the assembly map is presented. Using the solution of the Novikov conjecture for special groups some applications to the classification of low dimensional manifolds are given. Finally, the most recent developments concerning these conjectures are surveyed, including a detailed status report. The prerequisites consist of a solid knowledge of the basics about manifolds, vector bundles, (co-) homology and characteristic classes.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aLück, Wolfgang.
_eautor
_9350769
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783764371418
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/b137100
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c310167
_d310167