000 | 02671nam a22003735i 4500 | ||
---|---|---|---|
001 | 310448 | ||
003 | MX-SnUAN | ||
005 | 20160429160405.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2011 it | o |||| 0|eng d | ||
020 |
_a9788876423819 _99788876423819 |
||
024 | 7 |
_a10.1007/9788876423819 _2doi |
|
035 | _avtls000364969 | ||
039 | 9 |
_a201509031052 _bVLOAD _c201405070405 _dVLOAD _y201402211241 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA150-272 | |
100 | 1 |
_aBoito, Paola. _eautor _9351217 |
|
245 | 1 | 0 |
_aStructured Matrix Based Methods for Approximate Polynomial GCD / _cby Paola Boito. |
264 | 1 |
_aPisa : _bEdizioni della Normale, _c2011. |
|
300 |
_a250 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aTesi/Theses ; _v15 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _ai. Introduction -- ii. Notation -- 1. Approximate polynomial GCD -- 2. Structured and resultant matrices -- 3. The Euclidean algorithm -- 4. Matrix factorization and approximate GCDs -- 5. Optimization approach -- 6. New factorization-based methods -- 7. A fast GCD algorithm -- 8. Numerical tests -- 9. Generalizations and further work -- 10. Appendix A: Distances and norms -- 11. Appendix B: Special matrices -- 12. Bibliography -- 13. Index. | |
520 | _aDefining and computing a greatest common divisor of two polynomials with inexact coefficients is a classical problem in symbolic-numeric computation. The first part of this book reviews the main results that have been proposed so far in the literature. As usual with polynomial computations, the polynomial GCD problem can be expressed in matrix form: the second part of the book focuses on this point of view and analyses the structure of the relevant matrices, such as Toeplitz, Toepliz-block and displacement structures. New algorithms for the computation of approximate polynomial GCD are presented, along with extensive numerical tests. The use of matrix structure allows, in particular, to lower the asymptotic computational cost from cubic to quadratic order with respect to polynomial degree. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9788876423802 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-88-7642-381-9 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c310448 _d310448 |