000 | 03763nam a22003855i 4500 | ||
---|---|---|---|
001 | 310593 | ||
003 | MX-SnUAN | ||
005 | 20160429160413.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2012 it | o |||| 0|eng d | ||
020 |
_a9788876424434 _99788876424434 |
||
024 | 7 |
_a10.1007/9788876424434 _2doi |
|
035 | _avtls000364975 | ||
039 | 9 |
_a201509030708 _bVLOAD _c201405070405 _dVLOAD _y201402211241 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA370-380 | |
100 | 1 |
_aGiaquinta, Mariano. _eautor _9305497 |
|
245 | 1 | 3 |
_aAn Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs / _cby Mariano Giaquinta, Luca Martinazzi. |
264 | 1 |
_aPisa : _bScuola Normale Superiore : _bImprint: Edizioni della Normale, _c2012. |
|
300 |
_axiii, 369 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 | _aPublications of the Scuola Normale Superiore | |
500 | _aSpringer eBooks | ||
505 | 0 | _a1 Harmonic functions -- 2 Direct methods -- 3 Hilbert space methods -- 4 L2-regularity: the Caccioppoli inequality -- 5 Schauder estimates -- 6 Some real analysis -- 7 Lp-theory -- 8 The regularity problem in the scalar case -- 9 Partial regularity in the vector-valued case -- 10 Harmonic maps -- 11 A survey of minimal graphs. | |
520 | _aThis volume deals with the regularity theory for elliptic systems. We may find the origin of such a theory in two of the problems posed by David Hilbert in his celebrated lecture delivered during the International Congress of Mathematicians in 1900 in Paris: 19th problem: Are the solutions to regular problems in the Calculus of Variations always necessarily analytic? 20th problem: does any variational problem have a solution, provided that certain assumptions regarding the given boundary conditions are satisfied, and provided that the notion of a solution is suitably extended? During the last century these two problems have generated a great deal of work, usually referred to as regularity theory, which makes this topic quite relevant in many fields and still very active for research. However, the purpose of this volume, addressed mainly to students, is much more limited. We aim to illustrate only some of the basic ideas and techniques introduced in this context, confining ourselves to important but simple situations and refraining from completeness. In fact some relevant topics are omitted. Topics include: harmonic functions, direct methods, Hilbert space methods and Sobolev spaces, energy estimates, Schauder and Lp-theory both with and without potential theory, including the Calderon-Zygmund theorem, Harnack's and De Giorgi-Moser-Nash theorems in the scalar case and partial regularity theorems in the vector valued case; energy minimizing harmonic maps and minimal graphs in codimension 1 and greater than 1. In this second deeply revised edition we also included the regularity of 2-dimensional weakly harmonic maps, the partial regularity of stationary harmonic maps, and their connections with the case p=1 of the Lp theory, including the celebrated results of Wente and of Coifman-Lions-Meyer-Semmes. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aMartinazzi, Luca. _eautor _9351456 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9788876424427 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-88-7642-443-4 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c310593 _d310593 |