000 02391nam a22003615i 4500
001 310643
003 MX-SnUAN
005 20170705134322.0
007 cr nn 008mamaa
008 150903s2013 it | o |||| 0|eng d
020 _a9788876424588
_99788876424588
024 7 _a10.1007/9788876424588
_2doi
035 _avtls000364977
039 9 _a201509030708
_bVLOAD
_c201405070405
_dVLOAD
_y201402211241
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA315-316
100 1 _aPhilippis, Guido.
_eautor
_9351513
245 1 0 _aRegularity of Optimal Transport Maps and Applications /
_cby Guido Philippis.
264 1 _aPisa :
_bScuola Normale Superiore :
_bImprint: Edizioni della Normale,
_c2013.
300 _aApprox. 190 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aPublications of the Scuola Normale Superiore ;
_v17
500 _aSpringer eBooks
520 _aIn this thesis, we study the regularity of optimal transport maps and its applications to the semi-geostrophic system. The first two chapters survey the known theory, in particular there is a self-contained proof of Brenier’ theorem on existence of optimal transport maps and of Caffarelli’s Theorem on Holder continuity of optimal maps. In the third and fourth chapter we start investigating Sobolev regularity of optimal transport maps, while in Chapter 5 we show how the above mentioned results allows to prove the existence of Eulerian solution to the semi-geostrophic equation. In Chapter 6 we prove partial regularity of optimal maps with respect to a generic cost functions (it is well known that in this case global regularity can not be expected). More precisely we show that if the target and source measure have smooth densities the optimal map is always smooth outside a closed set of measure zero.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9788876424564
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-88-7642-458-8
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c310643
_d310643