000 03290nam a22003735i 4500
001 310899
003 MX-SnUAN
005 20160429160429.0
007 cr nn 008mamaa
008 150903s2009 ne | o |||| 0|eng d
020 _a9789048124336
_99789048124336
024 7 _a10.1007/9789048124336
_2doi
035 _avtls000365052
039 9 _a201509030709
_bVLOAD
_c201405070406
_dVLOAD
_y201402211243
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aTA357-359
100 1 _aZeytounian, R. Kh.
_eautor
_9351895
245 1 0 _aConvection in Fluids /
_cby R. Kh. Zeytounian.
264 1 _aDordrecht :
_bSpringer Netherlands,
_c2009.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aFluid Mechanics and its Applications,
_x0926-5112 ;
_v90
500 _aSpringer eBooks
505 0 _aShort Preliminary Comments and Summary of Chapters 2 to 10 -- The Navier—Stokes—Fourier System of Equations and Conditions -- The Simple Rayleigh (1916) Thermal Convection Problem -- The Bénard (1900, 1901) Convection Problem, Heated from below -- The Rayleigh—Bénard Shallow Thermal Convection Problem -- The Deep Thermal Convection Problem -- The Thermocapillary, Marangoni, Convection Problem -- Summing Up the Three Significant Models Related with the Bénard Convection Problem -- Some Atmospheric Thermal Convection Problems -- Miscellaneous: Various Convection Model Problems.
520 _aIn the present monograph, entirely devoted to “Convection in Fluids”, the purpose is to present a unified rational approach of various convective phenomena in fluids (mainly considered as a thermally perfect gas or an expansible liquid), where the main driving mechanism is the buoyancy force (Archimedean thrust) or temperature-dependent surface tension in homogeneities (Marangoni effect). Also, the general mathematical formulation (for instance, in the Bénard problem - heated from below)and the effect of the free surface deformation are taken into account. In the case of the atmospheric thermal convection, the Coriolis force and stratification effects are also considered. The main motivation is to give a rational, analytical, analysis of main above mentioned physical effects in each case, on the basis of the full unsteady Navier-Stokes and Fourier (NS-F) equations - for a Newtonian compressible viscous and heat-conducting fluid - coupled with the associated initiales (at initial time), boundary (lower-at the solid plane) and free surface (upper-in contact with ambiant air) conditions. This, obviously, is not an easy but a necessary task if we have in mind a rational modelling process with a view of a numerical coherent simulation on a high speed computer.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9789048124329
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-90-481-2433-6
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c310899
_d310899