000 | 03290nam a22003735i 4500 | ||
---|---|---|---|
001 | 310899 | ||
003 | MX-SnUAN | ||
005 | 20160429160429.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2009 ne | o |||| 0|eng d | ||
020 |
_a9789048124336 _99789048124336 |
||
024 | 7 |
_a10.1007/9789048124336 _2doi |
|
035 | _avtls000365052 | ||
039 | 9 |
_a201509030709 _bVLOAD _c201405070406 _dVLOAD _y201402211243 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aTA357-359 | |
100 | 1 |
_aZeytounian, R. Kh. _eautor _9351895 |
|
245 | 1 | 0 |
_aConvection in Fluids / _cby R. Kh. Zeytounian. |
264 | 1 |
_aDordrecht : _bSpringer Netherlands, _c2009. |
|
300 | _brecurso en línea. | ||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aFluid Mechanics and its Applications, _x0926-5112 ; _v90 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aShort Preliminary Comments and Summary of Chapters 2 to 10 -- The Navier—Stokes—Fourier System of Equations and Conditions -- The Simple Rayleigh (1916) Thermal Convection Problem -- The Bénard (1900, 1901) Convection Problem, Heated from below -- The Rayleigh—Bénard Shallow Thermal Convection Problem -- The Deep Thermal Convection Problem -- The Thermocapillary, Marangoni, Convection Problem -- Summing Up the Three Significant Models Related with the Bénard Convection Problem -- Some Atmospheric Thermal Convection Problems -- Miscellaneous: Various Convection Model Problems. | |
520 | _aIn the present monograph, entirely devoted to “Convection in Fluids”, the purpose is to present a unified rational approach of various convective phenomena in fluids (mainly considered as a thermally perfect gas or an expansible liquid), where the main driving mechanism is the buoyancy force (Archimedean thrust) or temperature-dependent surface tension in homogeneities (Marangoni effect). Also, the general mathematical formulation (for instance, in the Bénard problem - heated from below)and the effect of the free surface deformation are taken into account. In the case of the atmospheric thermal convection, the Coriolis force and stratification effects are also considered. The main motivation is to give a rational, analytical, analysis of main above mentioned physical effects in each case, on the basis of the full unsteady Navier-Stokes and Fourier (NS-F) equations - for a Newtonian compressible viscous and heat-conducting fluid - coupled with the associated initiales (at initial time), boundary (lower-at the solid plane) and free surface (upper-in contact with ambiant air) conditions. This, obviously, is not an easy but a necessary task if we have in mind a rational modelling process with a view of a numerical coherent simulation on a high speed computer. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9789048124329 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-90-481-2433-6 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c310899 _d310899 |