000 | 03313nam a22003735i 4500 | ||
---|---|---|---|
001 | 311274 | ||
003 | MX-SnUAN | ||
005 | 20160429160447.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2009 it | o |||| 0|eng d | ||
020 |
_a9788847010710 _99788847010710 |
||
024 | 7 |
_a10.1007/9788847010710 _2doi |
|
035 | _avtls000364453 | ||
039 | 9 |
_a201509030646 _bVLOAD _c201405070357 _dVLOAD _y201402211213 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA1-939 | |
100 | 1 |
_aQuarteroni, Alfio. _eautor _9328236 |
|
245 | 1 | 0 |
_aNumerical Models for Differential Problems / _cby Alfio Quarteroni. |
264 | 1 |
_aMilano : _bSpringer Milan, _c2009. |
|
300 |
_axvI, 601 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aMS&A ; _v2 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aA brief survey on partial differential equations -- Elements of functional analysis -- Elliptic equations -- The Galerkin finite element method for elliptic problems -- Parabolic equations -- Generation of 1D and 2D grids -- Algorithms for the solution of linear systems -- Elements of finite element programming -- The finite volume method -- Spectral methods -- Diffusion-transport-reaction equations -- Finite differences for hyperbolic equations -- Finite elements and spectral methods for hyperbolic equations -- Nonlinear hyperbolic problems -- Navier-Stokes equations -- Optimal control of partial differential equations -- Domain decomposition methods -- Reduced basis approximation for parametrized partial differential equations. | |
520 | _aIn this text, we introduce the basic concepts for the numerical modelling of partial differential equations. We consider the classical elliptic, parabolic and hyperbolic linear equations, but also the diffusion, transport, and Navier-Stokes equations, as well as equations representing conservation laws, saddle-point problems and optimal control problems. Furthermore, we provide numerous physical examples which underline such equations. We then analyze numerical solution methods based on finite elements, finite differences, finite volumes, spectral methods and domain decomposition methods, and reduced basis methods. In particular, we discuss the algorithmic and computer implementation aspects and provide a number of easy-to-use programs. The text does not require any previous advanced mathematical knowledge of partial differential equations: the absolutely essential concepts are reported in a preliminary chapter. It is therefore suitable for students of bachelor and master courses in scientific disciplines, and recommendable to those researchers in the academic and extra-academic domain who want to approach this interesting branch of applied mathematics. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9788847010703 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-88-470-1071-0 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c311274 _d311274 |