000 03313nam a22003735i 4500
001 311274
003 MX-SnUAN
005 20160429160447.0
007 cr nn 008mamaa
008 150903s2009 it | o |||| 0|eng d
020 _a9788847010710
_99788847010710
024 7 _a10.1007/9788847010710
_2doi
035 _avtls000364453
039 9 _a201509030646
_bVLOAD
_c201405070357
_dVLOAD
_y201402211213
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA1-939
100 1 _aQuarteroni, Alfio.
_eautor
_9328236
245 1 0 _aNumerical Models for Differential Problems /
_cby Alfio Quarteroni.
264 1 _aMilano :
_bSpringer Milan,
_c2009.
300 _axvI, 601 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aMS&A ;
_v2
500 _aSpringer eBooks
505 0 _aA brief survey on partial differential equations -- Elements of functional analysis -- Elliptic equations -- The Galerkin finite element method for elliptic problems -- Parabolic equations -- Generation of 1D and 2D grids -- Algorithms for the solution of linear systems -- Elements of finite element programming -- The finite volume method -- Spectral methods -- Diffusion-transport-reaction equations -- Finite differences for hyperbolic equations -- Finite elements and spectral methods for hyperbolic equations -- Nonlinear hyperbolic problems -- Navier-Stokes equations -- Optimal control of partial differential equations -- Domain decomposition methods -- Reduced basis approximation for parametrized partial differential equations.
520 _aIn this text, we introduce the basic concepts for the numerical modelling of partial differential equations. We consider the classical elliptic, parabolic and hyperbolic linear equations, but also the diffusion, transport, and Navier-Stokes equations, as well as equations representing conservation laws, saddle-point problems and optimal control problems. Furthermore, we provide numerous physical examples which underline such equations. We then analyze numerical solution methods based on finite elements, finite differences, finite volumes, spectral methods and domain decomposition methods, and reduced basis methods. In particular, we discuss the algorithmic and computer implementation aspects and provide a number of easy-to-use programs. The text does not require any previous advanced mathematical knowledge of partial differential equations: the absolutely essential concepts are reported in a preliminary chapter. It is therefore suitable for students of bachelor and master courses in scientific disciplines, and recommendable to those researchers in the academic and extra-academic domain who want to approach this interesting branch of applied mathematics.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9788847010703
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-88-470-1071-0
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c311274
_d311274