000 | 03847nam a22003735i 4500 | ||
---|---|---|---|
001 | 311977 | ||
003 | MX-SnUAN | ||
005 | 20160429160524.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2012 ne | o |||| 0|eng d | ||
020 |
_a9789400740754 _99789400740754 |
||
024 | 7 |
_a10.1007/9789400740754 _2doi |
|
035 | _avtls000367153 | ||
039 | 9 |
_a201509030658 _bVLOAD _c201405070437 _dVLOAD _y201402251609 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aTA703-705.4 | |
100 | 1 |
_aLakshmanan, Valliappa. _eautor _9353452 |
|
245 | 1 | 0 |
_aAutomating the Analysis of Spatial Grids : _bA Practical Guide to Data Mining Geospatial Images for Human & Environmental Applications / _cby Valliappa Lakshmanan. |
264 | 1 |
_aDordrecht : _bSpringer Netherlands : _bImprint: Springer, _c2012. |
|
300 |
_ax, 320 páginas 136 ilustraciones en color. _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aGeotechnologies and the Environment ; _v6 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aAutomated Analysis of Spatial Grids: Motivation and Challenges -- -Geographic Information Systems -- -GIS Operations -- -Need for Automation -- -Spatial Grids -- -Challenges in Automated Analysis -- -Spatial Data Mining Algorithms -- Geospatial grids -- -Representation -- -Linearity of data values -- -Instrument geometry -- -Gridding point observations -- -Rasterization -- -Example Applications -- Data Structures for Spatial Grids -- -Array -- -Pixels -- -Level set -- -Topographical surface -- -Markov chain -- -Matrix -- -Parametric approximation -- -Relational structure -- -Applications -- Global and Local Image Statistics -- -Types of statistics -- -Distances -- -Distance transform -- -Probability Functions -- -Local measures -- -Example Applications -- Neighborhood and Window Operations -- -Preprocessing -- -Window operations -- -Median filter -- -Morphological operations -- -Skeletonization -- -Frequency Domain Convolution -- -Example Applications -- Identifying Objects -- -Object identification -- -Region growing -- -Region properties -- -Hysteresis -- -Active contours -- -Watershed Transform -- -Enhanced watershed -- -Contiguity-enhanced Clustering -- -Choosing an object-identification technique -- -Example Applications -- Change and Motion Estimation -- -Estimating change -- -Optical Flow -- -Object-tracking -- -Choosing a change or motion estimation technique -- -Example Applications -- Data Mining Attributes from Spatial Grids -- -Data Mining -- -A Fuzzy Logic Application -- -Supervised learning models -- -Clustering -- -Example Applications. | |
520 | _aThe ability to create automated algorithms to process gridded spatial data is increasingly important as remotely sensed datasets increase in volume and frequency. Whether in business, social science, ecology, meteorology or urban planning, the ability to create automated applications to analyze and detect patterns in geospatial data is increasingly important. This book provides students with a foundation in topics of digital image processing and data mining as applied to geospatial datasets. The aim is for readers to be able to devise and implement automated techniques to extract information from spatial grids such as radar, satellite or high-resolution survey imagery. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9789400740747 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-94-007-4075-4 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c311977 _d311977 |