000 08631nam a22003855i 4500
001 312988
003 MX-SnUAN
005 20170705134327.0
007 cr nn 008mamaa
008 150903s2011 ne | o |||| 0|eng d
020 _a9789400700239
_99789400700239
024 7 _a10.1007/9789400700239
_2doi
035 _avtls000366200
039 9 _a201509031059
_bVLOAD
_c201405070422
_dVLOAD
_y201402251330
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aTJ210.2-211.495
100 1 _aRaptis, Ioannis A.
_eautor
_9355021
245 1 0 _aLinear and Nonlinear Control of Small-Scale Unmanned Helicopters /
_cby Ioannis A. Raptis, Kimon P. Valavanis.
264 1 _aDordrecht :
_bSpringer Netherlands :
_bImprint: Springer,
_c2011.
300 _axxvI, 198 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aIntelligent Systems, Control and Automation: Science and Engineering,
_x2213-8986 ;
_v45
500 _aSpringer eBooks
505 0 _a1 Introduction -- 1.1 Background Information -- 1.2 The Mathematical Problem . -- 1.3 Controller Designs -- 1.3.1 Linear Controller Design -- 1.3.2 Nonlinear Controller Design -- 1.4 Outline of the Book -- 2 Review of Linear and Nonlinear Controller Designs -- 2.1 Linear Controller Designs -- 2.2 Nonlinear Controller Design -- 2.3 Remarks -- 3 Helicopter Basic Equations of Motion -- 3.1 Helicopter Equations of Motion -- 3.2 Position and Orientation of the Helicopter -- 3.2.1 Helicopter Position Dynamics -- 3.2.2 Helicopter Orientation Dynamics -- 3.3 Complete Helicopter Dynamics -- 3.4 Remarks -- 4 Simplified Rotor Dynamics -- 4.1 Introduction -- 4.2 Blade Motion -- 4.3 Swashplate Mechanism -- 4.4 Fundamental Rotor Aerodynamics -- 4.5 Flapping Equations of Motion -- 4.6 Rotor Tip-Path-Plane Equation -- 4.7 First Order Tip-Path-Plane Equations -- 4.8 Main Rotor Forces and Moments -- 4.9 Remarks -- 5 Frequency Domain System Identification -- 5.1 Mathematical Modeling -- 5.1.1 First Principles Modeling -- 5.1.2 System Identification Modeling -- 5.2 Frequency Domain System Identification -- 5.3 Advantages of the Frequency Domain Identification -- 5.4 Helicopter Identification Challenges -- 5.5 Frequency Response and the Coherence Function -- 5.6 The CIFER c Package -- 5.7 Time History Data and Excitation Inputs -- 5.8 Linearization of the Equations of Motion -- 5.9 Stability and Control Derivatives -- 5.10 Model Identification -- 5.10.1 Experimental Platform -- 5.10.2 Parametrized State Space Model -- 5.10.3 Identification Setup -- 5.10.4 Time Domain Validation -- 5.11 Remarks -- 6 Linear Tracking Controller Design for Small-Scale Unmanned Helicopters -- 6.1 Helicopter Linear Model -- 6.2 Linear Controller Design Outline -- 6.3 Decomposing the System -- 6.4 Velocity and Heading Tracking Controller Design -- 6.4.1 Lateral-Longitudinal Dynamics -- 6.4.2 Yaw-Heave Dynamics -- 6.4.3 Stability of the Complete System Error Dynamics -- 6.5 Position and Heading Tracking -- 6.6 PID Controller Design -- 6.7 Experimental Results -- 6.8 Remarks -- 7 Nonlinear Tracking Controller Design for Unmanned Helicopters -- 7.1 Introduction -- 7.2 Helicopter Nonlinear Model -- 7.2.1 Rigid Body Dynamics -- 7.2.2 ExternalWrench Model -- 7.2.3 Complete Rigid Body Dynamics -- 7.3 Translational Error Dynamics -- 7.4 Attitude Error Dynamics -- 7.4.1 Yaw Error Dynamics -- 7.4.2 Orientation Error Dynamics -- 7.4.3 Angular Velocity Error Dynamics -- 7.5 Stability of the Attitude Error Dynamics -- 7.6 Stability of the Translational Error Dynamics -- 7.7 Numeric Simulation Results -- 7.8 Remarks -- 8 Time Domain Parameter Estimation and Applied Discrete Nonlinear Control for Small-Scale Unmanned Helicopters -- 8.1 Introduction -- 8.2 Discrete System Dynamics -- 8.3 Discrete Backstepping Algorithm -- 8.3.1 Angular Velocity Dynamics -- 8.3.2 Translational Dynamics -- 8.3.3 Yaw Dynamics -- 8.4 Parameter Estimation Using Recursive Least Squares -- 8.5 Parametric Model -- 8.6 Experimental Results -- 8.6.1 Time History Data and Excitation Inputs -- 8.6.2 Validation -- 8.6.3 Control Design -- 8.7 Remarks -- 9 Time Domain System Identification for Small-Scale Unmanned Helicopters Using Fuzzy Models -- 9.1 Introduction -- 9.2 Takagi-Sugeno Fuzzy Models -- 9.3 Proposed Takagi-Sugeno System for Helicopters -- 9.4 Experimental Results -- 9.4.1 Tunning of the Membership Function Parameters -- 9.4.2 Validation -- 10 Comparison Studies -- 10.1 Summary of the Controller Designs -- 10.2 Experimental Results -- 10.3 First Maneuver: Forward Flight -- 10.4 Second Maneuver: Aggressive Forward Flight -- 10.5 Third Maneuver: 8 Shaped Trajectory -- 10.6 Fourth Maneuver: Pirouette Trajectory -- 10.7 Remarks -- 11 Epilogue -- 11.1 Introduction -- 11.2 Advantages and Novelties of the Designs -- 11.3 Testing and Implementation -- 11.4 Remarks -- A Fundamentals of Backstepping Control -- A.1 Integrator Backstepping -- A.2 Example of a Recursive Backstepping Design -- References.
520 _aThere has been significant interest for designing flight controllers for small-scale unmanned helicopters. Such helicopters preserve all the physical attributes of their full-scale counterparts, being at the same time more agile and dexterous. This book presents a comprehensive and well justified analysis for designing flight controllers for small-scale unmanned helicopters guarantying flight stability and tracking accuracy. The design of the flight controller is a critical and integral part for developing an autonomous helicopter platform. Helicopters are underactuated, highly nonlinear systems with significant dynamic coupling that needs to be considered and accounted for during controller design and implementation. Most reliable mathematical tools for analysis of control systems relate to modern control theory. Modern control techniques are model-based since the controller architecture depends on the dynamic representation of the system to be controlled. Therefore, the flight controller design problem is tightly connected with the helicopter modeling. This book provides a step-by-step methodology for designing, evaluating and implementing efficient flight controllers for small-scale helicopters. Design issues that are analytically covered include: • An illustrative presentation of both linear and nonlinear models of ordinary differential equations representing the helicopter dynamics. A detailed presentation of the helicopter equations of motion is given for the derivation of both model types. In addition, an insightful presentation of the main rotor's mechanism, aerodynamics and dynamics is also provided. Both model types are of low complexity, physically meaningful and capable of encapsulating the dynamic behavior of a large class of small-scale helicopters. • An illustrative and rigorous derivation of mathematical control algorithms based on both the linear and nonlinear representation of the helicopter dynamics. Flight controller designs guarantee that the tracking objectives of the helicopter's inertial position (or velocity) and heading are achieved. Each controller is carefully constructed by considering the small-scale helicopter's physical flight capabilities. Concepts of advanced stability analysis are used to improve the efficiency and reduce the complexity of the flight control system. Controller designs are derived in both continuous time and discrete time covering discretization issues, which emerge from the implementation of the control algorithm using microprocessors. • Presentation of the most powerful, practical and efficient methods for extracting the helicopter model parameters based on input/output responses, collected by the measurement instruments. This topic is of particular importance for real-life implementation of the control algorithms. This book is suitable for students and researchers interested in the development and the mathematical derivation of flight controllers for small-scale helicopters. Background knowledge in modern control is required.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aValavanis, Kimon P.
_eautor
_9310259
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9789400700222
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-94-007-0023-9
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c312988
_d312988