000 | 03858nam a22003735i 4500 | ||
---|---|---|---|
001 | 313630 | ||
003 | MX-SnUAN | ||
005 | 20160429160707.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2013 ne | o |||| 0|eng d | ||
020 |
_a9789400758247 _99789400758247 |
||
024 | 7 |
_a10.1007/9789400758247 _2doi |
|
035 | _avtls000367682 | ||
039 | 9 |
_a201509031046 _bVLOAD _c201405070445 _dVLOAD _y201402251630 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aR-RZ | |
100 | 1 |
_aCleophas, Ton J. _eautor _9308040 |
|
245 | 1 | 0 |
_aMachine Learning in Medicine / _cby Ton J. Cleophas, Aeilko H. Zwinderman. |
264 | 1 |
_aDordrecht : _bSpringer Netherlands : _bImprint: Springer, _c2013. |
|
300 |
_axv, 265 páginas 44 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
500 | _aSpringer eBooks | ||
505 | 0 | _aPreface -- 1 Introduction to machine learning -- 2 Logistic regression for health profiling -- 3 Optimal scaling: discretization -- 4 Optimal scaling: regularization including ridge, lasso, and elastic net regression -- 5 Partial correlations -- 6 Mixed linear modelling -- 7 Binary partitioning -- 8 Item response modelling -- 9 Time-dependent predictor modelling -- 10 Seasonality assessments -- 11 Non-linear modelling -- 12 Artificial intelligence, multilayer Perceptron modelling -- 13 Artificial intelligence, radial basis function modelling -- 14 Factor analysis -- 15 Hierarchical cluster analysis for unsupervised data -- 16 Partial least squares -- 17 Discriminant analysis for Supervised data -- 18 Canonical regression -- 19 Fuzzy modelling -- 20 Conclusions. Index. . | |
520 | _aMachine learning is a novel discipline concerned with the analysis of large and multiple variables data. It involves computationally intensive methods, like factor analysis, cluster analysis, and discriminant analysis. It is currently mainly the domain of computer scientists, and is already commonly used in social sciences, marketing research, operational research and applied sciences. It is virtually unused in clinical research. This is probably due to the traditional belief of clinicians in clinical trials where multiple variables are equally balanced by the randomization process and are not further taken into account. In contrast, modern computer data files often involve hundreds of variables like genes and other laboratory values, and computationally intensive methods are required. This book was written as a hand-hold presentation accessible to clinicians, and as a must-read publication for those new to the methods. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aZwinderman, Aeilko H. _eautor _9308041 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9789400758230 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-94-007-5824-7 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c313630 _d313630 |