000 03858nam a22003735i 4500
001 313630
003 MX-SnUAN
005 20160429160707.0
007 cr nn 008mamaa
008 150903s2013 ne | o |||| 0|eng d
020 _a9789400758247
_99789400758247
024 7 _a10.1007/9789400758247
_2doi
035 _avtls000367682
039 9 _a201509031046
_bVLOAD
_c201405070445
_dVLOAD
_y201402251630
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aR-RZ
100 1 _aCleophas, Ton J.
_eautor
_9308040
245 1 0 _aMachine Learning in Medicine /
_cby Ton J. Cleophas, Aeilko H. Zwinderman.
264 1 _aDordrecht :
_bSpringer Netherlands :
_bImprint: Springer,
_c2013.
300 _axv, 265 páginas 44 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aPreface -- 1 Introduction to machine learning -- 2 Logistic regression for health profiling -- 3 Optimal scaling: discretization -- 4 Optimal scaling: regularization including ridge, lasso, and elastic net regression -- 5 Partial correlations -- 6 Mixed linear modelling -- 7 Binary partitioning -- 8 Item response modelling -- 9 Time-dependent predictor modelling -- 10 Seasonality assessments -- 11 Non-linear modelling -- 12 Artificial intelligence, multilayer Perceptron modelling -- 13 Artificial intelligence, radial basis function modelling -- 14 Factor analysis -- 15 Hierarchical cluster analysis for unsupervised data -- 16 Partial least squares -- 17 Discriminant analysis for Supervised data -- 18 Canonical regression -- 19 Fuzzy modelling -- 20 Conclusions. Index.                                                                                                                                                                                                                                                                                                                                                .
520 _aMachine learning is a novel discipline concerned with the analysis of large and multiple variables data. It involves computationally intensive methods, like factor analysis, cluster analysis, and discriminant analysis. It is currently mainly the domain of computer scientists, and is already commonly used in social sciences, marketing research, operational research and applied sciences. It is virtually unused in clinical research. This is probably due to the traditional belief of clinicians in clinical trials where multiple variables are equally balanced by the randomization process and are not further taken into account. In contrast, modern computer data files often involve hundreds of variables like genes and other laboratory values, and computationally intensive methods are required. This book was written as a hand-hold presentation accessible to clinicians, and as a must-read publication for those new to the methods.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aZwinderman, Aeilko H.
_eautor
_9308041
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9789400758230
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-94-007-5824-7
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c313630
_d313630