000 03467nam a22003735i 4500
001 313647
003 MX-SnUAN
005 20160429160708.0
007 cr nn 008mamaa
008 150903s2013 ne | o |||| 0|eng d
020 _a9789400768864
_99789400768864
024 7 _a10.1007/9789400768864
_2doi
035 _avtls000367978
039 9 _a201509030719
_bVLOAD
_c201405070450
_dVLOAD
_y201402251641
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aR-RZ
100 1 _aCleophas, Ton J.
_eautor
_9308040
245 1 0 _aMachine Learning in Medicine :
_bPart Two /
_cby Ton J. Cleophas, Aeilko H. Zwinderman.
264 1 _aDordrecht :
_bSpringer Netherlands :
_bImprint: Springer,
_c2013.
300 _axiv, 231 páginas 47 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aIntroduction to Machine Learning Part Two -- Two-stage Least Squares -- Multiple Imputations -- Bhattacharya Analysis -- Quality-of-life (QOL) Assessments with Odds Ratios -- Logistic Regression for Assessing Novel Diagnostic Tests against Control -- Validating Surrogate Endpoints -- Two-dimensional Clustering -- Multidimensional Clustering -- Anomaly Detection -- Association Rule Analysis -- Multidimensional Scaling -- Correspondence Analysis -- Multivariate Analysis of Time Series -- Support Vector Machines -- Bayesian Networks -- Protein and DNA Sequence Mining -- Continuous Sequential Techniques -- Discrete Wavelet Analysis -- Machine Learning and Common Sense -- Statistical Tables -- Index.
520 _aMachine learning is concerned with the analysis of large data and multiple variables. However, it is also often more sensitive than traditional statistical methods to analyze small data. The first volume reviewed subjects like optimal scaling, neural networks, factor analysis, partial least squares, discriminant analysis, canonical analysis, and fuzzy modeling. This second volume includes various clustering models, support vector machines, Bayesian networks, discrete wavelet analysis, genetic programming, association rule learning, anomaly detection, correspondence analysis, and other subjects. Both the theoretical bases and the step by step analyses are described for the benefit of non-mathematical readers. Each chapter can be studied without the need to consult other chapters. Traditional statistical tests are, sometimes, priors to machine learning methods, and they are also, sometimes, used as contrast tests. To those wishing to obtain more knowledge of them, we recommend to additionally study (1) Statistics Applied to Clinical Studies 5th Edition 2012, (2) SPSS for Starters Part One and Two 2012, and (3) Statistical Analysis of Clinical Data on a Pocket Calculator Part One and Two 2012, written by the same authors, and edited by Springer, New York.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aZwinderman, Aeilko H.
_eautor
_9308041
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9789400768857
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-94-007-6886-4
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c313647
_d313647