000 | 03286nam a22003495i 4500 | ||
---|---|---|---|
001 | 317187 | ||
003 | MX-SnUAN | ||
005 | 20160429161015.0 | ||
007 | cr nn 008mamaa | ||
008 | 160108s2014 gw | s |||| 0|eng d | ||
020 |
_a9783319041810 _9978-3-319-04181-0 |
||
035 | _avtls000416398 | ||
039 | 9 |
_y201601081119 _zstaff |
|
050 | 4 | _aR1 | |
100 | 1 |
_aCleophas, Ton J, _eautor. _9308040 |
|
245 | 1 | 0 |
_aMachine learning in medicine - cookbook / _cTon J. Cleophas, Aeilko H. Zwinderman. |
264 | 1 |
_aCham : _bSpringer International Publishing : _bSpringer, _c2014. |
|
300 |
_axi, 137 páginas : _b14 ilustraciones |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aSpringerBriefs in Statistics, _x2191-544X |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aI Cluster Models -- Hierarchical Clustering and K-means Clustering to Identify Subgroups in Surveys (50 Patients) -- Density-based Clustering to Identify Outlier Groups in Otherwise Homogeneous Data (50 Patients) -- Two Step Clustering to Identify Subgroups and Predict Subgroup Memberships in Individual Future Patients (120 Patients) -- II Linear Models -- Linear, Logistic and Cox Regression for Outcome Prediction with Unpaired Data (20, 55 and 60 Patients) -- Generalized Linear Models for Outcome Prediction with Paired Data (100 Patients and 139 Physicians) -- Generalized Linear Models for Predicting Event-Rates (50 Patients) Exact P-Values -- Factor Analysis and Partial Least Squares (PLS) for Complex-Data Reduction (250 Patients) -- Optimal Scaling of High-sensitivity Analysis of Health Predictors (250 Patients) -- Discriminant Analysis for Making a Diagnosis from Multiple Outcomes (45 Patients) -- Weighted Least Squares for Adjusting Efficacy Data with Inconsistent Spread (78 Patients) -- Partial Correlations for Removing Interaction Effects from Efficacy Data (64 Patients) -- Canonical Regression for Overall Statistics of Multivariate Data (250 Patients). III Rules Models -- Neural Networks for Assessing Relationships that are Typically Nonlinear (90 Patients) -- Complex Samples Methodologies for Unbiased Sampling (9,678 Persons) -- Correspondence Analysis for Identifying the Best of Multiple Treatments in Multiple Groups (217 Patients) -- Decision Trees for Decision Analysis (1004 and 953 Patients) -- Multidimensional Scaling for Visualizing Experienced Drug Efficacies (14 Pain-killers and 42 Patients) -- Stochastic Processes for Long Term Predictions from Short Term Observations -- Optimal Binning for Finding High Risk Cut-offs (1445 Families) -- Conjoint Analysis for Determining the Most Appreciated Properties of Medicines to Be Developed (15 Physicians) -- Index. | |
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aZwinderman, Aeilko H, _eautor. _9308041 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783319041803 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-319-04181-0 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c317187 _d317187 |