000 03286nam a22003495i 4500
001 317187
003 MX-SnUAN
005 20160429161015.0
007 cr nn 008mamaa
008 160108s2014 gw | s |||| 0|eng d
020 _a9783319041810
_9978-3-319-04181-0
035 _avtls000416398
039 9 _y201601081119
_zstaff
050 4 _aR1
100 1 _aCleophas, Ton J,
_eautor.
_9308040
245 1 0 _aMachine learning in medicine - cookbook /
_cTon J. Cleophas, Aeilko H. Zwinderman.
264 1 _aCham :
_bSpringer International Publishing :
_bSpringer,
_c2014.
300 _axi, 137 páginas :
_b14 ilustraciones
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aSpringerBriefs in Statistics,
_x2191-544X
500 _aSpringer eBooks
505 0 _aI Cluster Models -- Hierarchical Clustering and K-means Clustering to Identify Subgroups in Surveys (50 Patients) -- Density-based Clustering to Identify Outlier Groups in Otherwise Homogeneous Data (50 Patients) -- Two Step Clustering to Identify Subgroups and Predict Subgroup Memberships in Individual Future Patients (120 Patients) -- II Linear Models -- Linear, Logistic and Cox Regression for Outcome Prediction with Unpaired Data (20, 55 and 60 Patients) -- Generalized Linear Models for Outcome Prediction with Paired Data (100 Patients and 139 Physicians) -- Generalized Linear Models for Predicting Event-Rates (50 Patients) Exact P-Values -- Factor Analysis and Partial Least Squares (PLS) for Complex-Data Reduction (250 Patients) -- Optimal Scaling of High-sensitivity Analysis of Health Predictors (250 Patients) -- Discriminant Analysis for Making a Diagnosis from Multiple Outcomes (45 Patients) -- Weighted Least Squares for Adjusting Efficacy Data with Inconsistent Spread (78 Patients) -- Partial Correlations for Removing Interaction Effects from Efficacy Data (64 Patients) -- Canonical Regression for Overall Statistics of Multivariate Data (250 Patients). III Rules Models -- Neural Networks for Assessing Relationships that are Typically Nonlinear (90 Patients) -- Complex Samples Methodologies for Unbiased Sampling (9,678 Persons) -- Correspondence Analysis for Identifying the Best of Multiple Treatments in Multiple Groups (217 Patients) -- Decision Trees for Decision Analysis (1004 and 953 Patients) -- Multidimensional Scaling for Visualizing Experienced Drug Efficacies (14 Pain-killers and 42 Patients) -- Stochastic Processes for Long Term Predictions from Short Term Observations -- Optimal Binning for Finding High Risk Cut-offs (1445 Families) -- Conjoint Analysis for Determining the Most Appreciated Properties of Medicines to Be Developed (15 Physicians) -- Index.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aZwinderman, Aeilko H,
_eautor.
_9308041
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783319041803
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-319-04181-0
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c317187
_d317187