000 | 03385nam a22003855i 4500 | ||
---|---|---|---|
001 | 317813 | ||
003 | MX-SnUAN | ||
005 | 20160429161042.0 | ||
007 | cr nn 008mamaa | ||
008 | 160111s2015 gw | s |||| 0|eng d | ||
020 |
_a9783319116051 _9978-3-319-11605-1 |
||
035 | _avtls000418877 | ||
039 | 9 |
_y201601110908 _zstaff |
|
050 | 4 | _aHB135-147 | |
245 | 1 | 0 |
_aLarge deviations and asymptotic methods in finance / _cedited by Peter K. Friz, Jim Gatheral, Archil Gulisashvili, Antoine Jacquier, Josef Teichmann. |
264 | 1 |
_aCham : _bSpringer International Publishing : _bSpringer, _c2015. |
|
300 |
_aix, 590 páginas : _b26 ilustraciones, 14 ilustraciones en color. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aSpringer Proceedings in Mathematics & Statistics, _x2194-1009 ; _v110 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aHagan, Lesniewski, Woodward: Probability Distribution in the SABR Model of Stochastic Volatility -- Paulot: Asymptotic Implied Volatility at the Second Order with Application to the SABR Model -- Henry-Labordere: Unifying the BGM and SABR Models: A Short Ride in Hyperbolic Geometry -- Ben Arous, Laurence: Second Order Expansion for Implied Volatility in Two Factor Local-stochastic Volatility -- Osajima: General Asymptotics of Wiener Functionals and Application to Implied Volatilities -- Bayer, Laurence: Small-time asymptotics for the at-the-money implied volatility in a multi-dimensional local volatility model -- Keller-Ressel, Teichmann: A Remark on Gatheral's 'Most-likely Path Approximation' of Implied Volatility -- Gatheral, Wang: Implied volatility from local volatility: a path integral approach -- Gerhold, Friz: Don't Stay Local - Extrapolation Analytics for Dupire's Local Volatility -- Gulisashvili, Teichmann: Laplace Principle Expansions and Short Time Asymptotics for Affine Processes -- Lorig, Pascucci, Pagliarani: Asymptotics for d-dimensional Levy-type Processes -- Takahashi: An Asymptotic Expansion Approach in Finance -- Baudoin, Ouyang: On small time asymptotics for rough differential equations driven by fractional Brownian motions -- Lucic: On singularities in the Heston model.- Bayer, Friz, Laurence: On the probability density function of baskets -- Conforti, De Marco, Deuschel: On small-noise equations with degenerate limiting system arising from volatility models -- Pham: Long time asymptotic problems for optimal investment -- Spiliopoulos: Systemic Risk and Default Clustering for Large Financial Systems -- Jacod, Rosenbaum: Asymptotic Properties of a Volatility Estimator. | |
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aFriz, Peter K, _eeditor. _9359388 |
|
700 | 1 |
_aGatheral, Jim, _eeditor. _9361475 |
|
700 | 1 |
_aGulisashvili, Archil, _eeditor. _9344452 |
|
700 | 1 |
_aJacquier, Antoine, _eeditor. _9361476 |
|
700 | 1 |
_aTeichmann, Josef, _eeditor. _9361477 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783319116044 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-319-11605-1 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c317813 _d317813 |