000 | 02922nam a22003495i 4500 | ||
---|---|---|---|
001 | 318292 | ||
003 | MX-SnUAN | ||
005 | 20160429161123.0 | ||
007 | cr nn 008mamaa | ||
008 | 160111s2014 gw | s |||| 0|eng d | ||
020 |
_a9783319121635 _9978-3-319-12163-5 |
||
035 | _avtls000419058 | ||
039 | 9 |
_y201601110910 _zstaff |
|
050 | 4 | _aR-RZ | |
100 | 1 |
_aCleophas, Ton J, _eautor. _9308040 |
|
245 | 1 | 0 |
_aMachine learning in medicine - cookbook three / _cTon J. Cleophas, Aeilko H. Zwinderman. |
264 | 1 |
_aCham : _bSpringer International Publishing : _bSpringer, _c2014. |
|
300 |
_axiii, 131 páginas : _b37 ilustraciones |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aSpringerBriefs in Statistics, _x2191-544X |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aPreface -- I. Cluster Models -- Hierarchical Clustering and K-means Clustering to Identify Subgroups in Surveys.- Density-based Clustering to Identify Outlier Groups in Otherwise Homogeneous Data.- Two Step Clustering to Identify Subgroups and Predict Subgroup Memberships -- II. Linear Models.- Linear, Logistic, and Cox Regression for Outcome Prediction with Unpaired Data.-Generalized Linear Models for Outcome Prediction with Paired Data.- Generalized Linear Models for Predicting Event-Rates.-Factor Analysis and Partial Least Squares (PLS) for Complex-Data Reduction -- Optimal Scaling of High-sensitivity Analysis of Health Predictors.- Discriminant Analysis for Making a Diagnosis from Multiple Outcomes.- Weighted Least Squares for Adjusting Efficacy Data with Inconsistent Spread.- Partial Correlations for Removing Interaction Effects from Efficacy Data.- Canonical Regression for Overall Statistics of Multivariate Data -- III. Rules Models -- Neural Networks for Assessing Relationships that are Typically Nonlinear.-Complex Samples Methodologies for Unbiased Sampling.-Correspondence Analysis for Identifying the Best of Multiple Treatments in Multiple Groups.- Decision Trees for Decision Analysis.- Multidimensional Scaling for Visualizing Experienced Drug Efficacies.- Stochastic Processes for Long Term Predictions from Short Term Observations.- Optimal Binning for Finding High Risk Cut-offs.- Conjoint Analysis for Determining the Most Appreciated Properties of Medicines to be Developed -- Index. | |
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aZwinderman, Aeilko H, _eautor. _9308041 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783319121628 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-319-12163-5 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c318292 _d318292 |