000 02922nam a22003495i 4500
001 318292
003 MX-SnUAN
005 20160429161123.0
007 cr nn 008mamaa
008 160111s2014 gw | s |||| 0|eng d
020 _a9783319121635
_9978-3-319-12163-5
035 _avtls000419058
039 9 _y201601110910
_zstaff
050 4 _aR-RZ
100 1 _aCleophas, Ton J,
_eautor.
_9308040
245 1 0 _aMachine learning in medicine - cookbook three /
_cTon J. Cleophas, Aeilko H. Zwinderman.
264 1 _aCham :
_bSpringer International Publishing :
_bSpringer,
_c2014.
300 _axiii, 131 páginas :
_b37 ilustraciones
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aSpringerBriefs in Statistics,
_x2191-544X
500 _aSpringer eBooks
505 0 _aPreface -- I. Cluster Models -- Hierarchical Clustering and K-means Clustering to Identify Subgroups in Surveys.- Density-based Clustering to Identify Outlier Groups in Otherwise Homogeneous Data.- Two Step Clustering to Identify Subgroups and Predict Subgroup Memberships -- II. Linear Models.- Linear, Logistic, and Cox Regression for Outcome Prediction with Unpaired Data.-Generalized Linear Models for Outcome Prediction with Paired Data.- Generalized Linear Models for Predicting Event-Rates.-Factor Analysis and Partial Least Squares (PLS) for Complex-Data Reduction -- Optimal Scaling of High-sensitivity Analysis of Health Predictors.- Discriminant Analysis for Making a Diagnosis from Multiple Outcomes.- Weighted Least Squares for Adjusting Efficacy Data with Inconsistent Spread.- Partial Correlations for Removing Interaction Effects from Efficacy Data.- Canonical Regression for Overall Statistics of Multivariate Data -- III. Rules Models -- Neural Networks for Assessing Relationships that are Typically Nonlinear.-Complex Samples Methodologies for Unbiased Sampling.-Correspondence Analysis for Identifying the Best of Multiple Treatments in Multiple Groups.- Decision Trees for Decision Analysis.- Multidimensional Scaling for Visualizing Experienced Drug Efficacies.- Stochastic Processes for Long Term Predictions from Short Term Observations.- Optimal Binning for Finding High Risk Cut-offs.- Conjoint Analysis for Determining the Most Appreciated Properties of Medicines to be Developed -- Index.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aZwinderman, Aeilko H,
_eautor.
_9308041
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783319121628
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-319-12163-5
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c318292
_d318292