000 01881nam a22003615i 4500
001 320687
003 MX-SnUAN
005 20160429161431.0
007 cr nn 008mamaa
008 160111s2015 gw | s |||| 0|eng d
020 _a9783319172200
_9978-3-319-17220-0
035 _avtls000420634
039 9 _y201601110949
_zstaff
050 4 _aQC851-999
245 1 0 _aMachine learning and data mining approaches to climate science :
_bproceedings of the 4th international workshop on climate informatics /
_cedited by Valliappa Lakshmanan, Eric Gilleland, Amy McGovern, Martin Tingley.
264 1 _aCham :
_bSpringer International Publishing :
_bSpringer,
_c2015.
300 _aix, 252 páginas :
_b89 ilustraciones, 73 ilustraciones en color.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aFrom the Contents: Machine learning, statistics, or data mining, applied to climate science -- Management and processing of large climate datasets -- Long and short-term climate prediction -- Ensemble characterization of climate model projections -- Past (paleo) climate reconstruction.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aLakshmanan, Valliappa,
_eeditor.
_9353452
700 1 _aGilleland, Eric,
_eeditor.
_9365460
700 1 _aMcGovern, Amy,
_eeditor.
_9365461
700 1 _aTingley, Martin,
_eeditor.
_9365462
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783319172194
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-319-17220-0
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c320687
_d320687