000 03277nam a22003615i 4500
001 321398
003 MX-SnUAN
005 20160429161501.0
007 cr nn 008mamaa
008 160111s2015 gw | s |||| 0|eng d
020 _a9783319218526
_9978-3-319-21852-6
035 _avtls000422025
039 9 _y201601111019
_zstaff
050 4 _aQ334-342
245 1 0 _aMeasures of complexity :
_bfestschrift for alexey chervonenkis /
_cedited by Vladimir Vovk, Harris Papadopoulos, Alexander Gammerman.
250 _a1st ed. 2015.
264 1 _aCham :
_bSpringer International Publishing :
_bSpringer,
_c2015.
300 _axxxi, 399 páginas :
_b47 ilustraciones, 30 ilustraciones en color.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aChervonenkis’s Recollections -- A Paper That Created Three New Fields -- On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities -- Sketched History: VC Combinatorics, 1826 up to 1975 -- Institute of Control Sciences through the Lens of VC Dimension -- VC Dimension, Fat-Shattering Dimension, Rademacher Averages, and Their Applications -- Around Kolmogorov Complexity: Basic Notions and Results -- Predictive Complexity for Games with Finite Outcome Spaces -- Making Vapnik–Chervonenkis Bounds Accurate -- Comment: Transductive PAC-Bayes Bounds Seen as a Generalization of Vapnik–Chervonenkis Bounds -- Comment: The Two Styles of VC Bounds -- Rejoinder: Making VC Bounds Accurate -- Measures of Complexity in the Theory of Machine Learning -- Classes of Functions Related to VC Properties -- On Martingale Extensions of Vapnik–Chervonenkis -- Theory with Applications to Online Learning -- Measuring the Capacity of Sets of Functions in the Analysis of ERM -- Algorithmic Statistics Revisited -- Justifying Information-Geometric Causal Inference -- Interpretation of Black-Box Predictive Models -- PAC-Bayes Bounds for Supervised Classification -- Bounding Embeddings of VC Classes into Maximum Classes -- Algorithmic Statistics Revisited -- Justifying Information-Geometric Causal Inference -- Interpretation of Black-Box Predictive Models -- PAC-Bayes Bounds for Supervised Classification -- Bounding Embeddings of VC Classes into Maximum Classes -- Strongly Consistent Detection for Nonparametric Hypotheses -- On the Version Space Compression Set Size and Its Applications -- Lower Bounds for Sparse Coding -- Robust Algorithms via PAC-Bayes and Laplace Distributions -- Postscript: Tragic Death of Alexey Chervonenkis -- Credits -- Index.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aVovk, Vladimir,
_eeditor.
_9299490
700 1 _aPapadopoulos, Harris,
_eeditor.
_9341395
700 1 _aGammerman, Alexander,
_eeditor.
_9301823
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783319218519
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-319-21852-6
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c321398
_d321398