000 | 03277nam a22003615i 4500 | ||
---|---|---|---|
001 | 321398 | ||
003 | MX-SnUAN | ||
005 | 20160429161501.0 | ||
007 | cr nn 008mamaa | ||
008 | 160111s2015 gw | s |||| 0|eng d | ||
020 |
_a9783319218526 _9978-3-319-21852-6 |
||
035 | _avtls000422025 | ||
039 | 9 |
_y201601111019 _zstaff |
|
050 | 4 | _aQ334-342 | |
245 | 1 | 0 |
_aMeasures of complexity : _bfestschrift for alexey chervonenkis / _cedited by Vladimir Vovk, Harris Papadopoulos, Alexander Gammerman. |
250 | _a1st ed. 2015. | ||
264 | 1 |
_aCham : _bSpringer International Publishing : _bSpringer, _c2015. |
|
300 |
_axxxi, 399 páginas : _b47 ilustraciones, 30 ilustraciones en color. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
500 | _aSpringer eBooks | ||
505 | 0 | _aChervonenkis’s Recollections -- A Paper That Created Three New Fields -- On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities -- Sketched History: VC Combinatorics, 1826 up to 1975 -- Institute of Control Sciences through the Lens of VC Dimension -- VC Dimension, Fat-Shattering Dimension, Rademacher Averages, and Their Applications -- Around Kolmogorov Complexity: Basic Notions and Results -- Predictive Complexity for Games with Finite Outcome Spaces -- Making Vapnik–Chervonenkis Bounds Accurate -- Comment: Transductive PAC-Bayes Bounds Seen as a Generalization of Vapnik–Chervonenkis Bounds -- Comment: The Two Styles of VC Bounds -- Rejoinder: Making VC Bounds Accurate -- Measures of Complexity in the Theory of Machine Learning -- Classes of Functions Related to VC Properties -- On Martingale Extensions of Vapnik–Chervonenkis -- Theory with Applications to Online Learning -- Measuring the Capacity of Sets of Functions in the Analysis of ERM -- Algorithmic Statistics Revisited -- Justifying Information-Geometric Causal Inference -- Interpretation of Black-Box Predictive Models -- PAC-Bayes Bounds for Supervised Classification -- Bounding Embeddings of VC Classes into Maximum Classes -- Algorithmic Statistics Revisited -- Justifying Information-Geometric Causal Inference -- Interpretation of Black-Box Predictive Models -- PAC-Bayes Bounds for Supervised Classification -- Bounding Embeddings of VC Classes into Maximum Classes -- Strongly Consistent Detection for Nonparametric Hypotheses -- On the Version Space Compression Set Size and Its Applications -- Lower Bounds for Sparse Coding -- Robust Algorithms via PAC-Bayes and Laplace Distributions -- Postscript: Tragic Death of Alexey Chervonenkis -- Credits -- Index. | |
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aVovk, Vladimir, _eeditor. _9299490 |
|
700 | 1 |
_aPapadopoulos, Harris, _eeditor. _9341395 |
|
700 | 1 |
_aGammerman, Alexander, _eeditor. _9301823 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783319218519 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-319-21852-6 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c321398 _d321398 |