000 | 02951nam a22003735i 4500 | ||
---|---|---|---|
001 | 321442 | ||
003 | MX-SnUAN | ||
005 | 20160429161502.0 | ||
007 | cr nn 008mamaa | ||
008 | 160111s2015 gw | s |||| 0|eng d | ||
020 |
_a9783319212845 _9978-3-319-21284-5 |
||
035 | _avtls000421865 | ||
039 | 9 |
_y201601111005 _zstaff |
|
050 | 4 | _aQA641-670 | |
245 | 1 | 0 |
_aExtended abstracts fall 2013 : _bgeometrical analysis; type theory, homotopy theory and univalent foundations / _cedited by Maria del Mar González, Paul C. Yang, Nicola Gambino, Joachim Kock. |
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Birkhäuser, _c2015. |
|
300 | _avi, 110 páginas : | ||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aTrends in Mathematics, _x2297-0215 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aPart I: Conference on Geometrical Analysis -- Foreword -- A Positive Mass Theorem in Three Dimensional Cauchy-Riemann Geometry -- On the Rigidity of Gradient Ricci Solitons.- Geometric Structures Modeled on Affine Hypersurfaces and Generalizations of the Einstein-Weyl and Affine Sphere Equations -- Submanifold Conformal Invariants and a Boundary Yamabe Problem -- Variation of the Total Q-Prime Curvature in CR Geometry -- Conformal Invariants from Nullspaces of Conformally Invariant Operators -- Rigidity of Bach-Flat Manifolds -- Uniformizing Surfaces with Conical Singularities -- Recent Results and Open Problems on Conformal Metrics on Rn with Constant Q-Curvature -- Isoperimetric Inequalities for Complete Proper Minimal Submanifolds in Hyperbolic Space -- Total Curvature of Complete Surfaces in Hyperbolic Space -- Constant Scalar Curvature Metrics on Hirzebruch Surfaces -- Isoperimetric Inequalities for Extremal Sobolev Functions -- Part II: Type Theory, Homotopy Theory and Univalent Foundations -- Foreword -- Univalent Categories and the Rezk Completion -- Covering Spaces in Homotopy Type Theory -- Towards a Topological Model of Homotopy Type Theory -- Made-to-Order Weak Factorization Systems -- A Descent Property for the Univalent Foundations -- Classical Field Theory via Cohesive Homotopy Types -- How Intensional is Homotopy Type Theory. | |
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aGonzález, Maria del Mar, _eeditor. _9366423 |
|
700 | 1 |
_aYang, Paul C, _eeditor. _9336905 |
|
700 | 1 |
_aGambino, Nicola, _eeditor. _9366424 |
|
700 | 1 |
_aKock, Joachim, _eeditor. _9306624 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783319212838 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-319-21284-5 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c321442 _d321442 |