Hebbian Learning and Negative Feedback Networks /
Fyfe, Colin.
Hebbian Learning and Negative Feedback Networks / by Colin Fyfe. - xviii, 383 páginas 117 ilustraciones recurso en línea. - Advanced Information and Knowledge Processing .
Springer eBooks
Single Stream Networks -- Background -- The Negative Feedback Network -- Peer-Inhibitory Neurons -- Multiple Cause Data -- Exploratory Data Analysis -- Topology Preserving Maps -- Maximum Likelihood Hebbian Learning -- Dual Stream Networks -- Two Neural Networks for Canonical Correlation Analysis -- Alternative Derivations of CCA Networks -- Kernel and Nonlinear Correlations -- Exploratory Correlation Analysis -- Multicollinearity and Partial Least Squares -- Twinned Principal Curves -- The Future.
The central idea of Hebbian Learning and Negative Feedback Networks is that artificial neural networks using negative feedback of activation can use simple Hebbian learning to self-organise so that they uncover interesting structures in data sets. Two variants are considered: the first uses a single stream of data to self-organise. By changing the learning rules for the network, it is shown how to perform Principal Component Analysis, Exploratory Projection Pursuit, Independent Component Analysis, Factor Analysis and a variety of topology preserving mappings for such data sets. The second variants use two input data streams on which they self-organise. In their basic form, these networks are shown to perform Canonical Correlation Analysis, the statistical technique which finds those filters onto which projections of the two data streams have greatest correlation. The book encompasses a wide range of real experiments and displays how the approaches it formulates can be applied to the analysis of real problems.
9781846281181
10.1007/b138856 doi
QA276-280
Hebbian Learning and Negative Feedback Networks / by Colin Fyfe. - xviii, 383 páginas 117 ilustraciones recurso en línea. - Advanced Information and Knowledge Processing .
Springer eBooks
Single Stream Networks -- Background -- The Negative Feedback Network -- Peer-Inhibitory Neurons -- Multiple Cause Data -- Exploratory Data Analysis -- Topology Preserving Maps -- Maximum Likelihood Hebbian Learning -- Dual Stream Networks -- Two Neural Networks for Canonical Correlation Analysis -- Alternative Derivations of CCA Networks -- Kernel and Nonlinear Correlations -- Exploratory Correlation Analysis -- Multicollinearity and Partial Least Squares -- Twinned Principal Curves -- The Future.
The central idea of Hebbian Learning and Negative Feedback Networks is that artificial neural networks using negative feedback of activation can use simple Hebbian learning to self-organise so that they uncover interesting structures in data sets. Two variants are considered: the first uses a single stream of data to self-organise. By changing the learning rules for the network, it is shown how to perform Principal Component Analysis, Exploratory Projection Pursuit, Independent Component Analysis, Factor Analysis and a variety of topology preserving mappings for such data sets. The second variants use two input data streams on which they self-organise. In their basic form, these networks are shown to perform Canonical Correlation Analysis, the statistical technique which finds those filters onto which projections of the two data streams have greatest correlation. The book encompasses a wide range of real experiments and displays how the approaches it formulates can be applied to the analysis of real problems.
9781846281181
10.1007/b138856 doi
QA276-280