TEST - Catálogo BURRF
   

Text Mining : Predictive Methods for Analyzing Unstructured Information / by Sholom M. Weiss, Nitin Indurkhya, Tong Zhang, Fred J. Damerau.

Por: Colaborador(es): Tipo de material: TextoTextoEditor: New York, NY : Springer New York, 2005Descripción: xii, 236 páginas, recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9780387345550
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA76.9.D343
Recursos en línea:
Contenidos:
Overview of Text Mining -- From Textual Information to Numerical Vectors -- Using Text for Prediction -- Information Retrieval and Text Mining -- Finding Structure in a Document Collection -- Looking for Information in Documents -- Case Studies -- Emerging Directions.
Resumen: One consequence of the pervasive use of computers is that most documents originate in digital form. Text mining—the process of searching, retrieving, and analyzing unstructured, natural-language text—is concerned with how to exploit the textual data embedded in these documents. Text Mining presents a comprehensive introduction and overview of the field, integrating related topics (such as artificial intelligence and knowledge discovery and data mining) and providing practical advice on how readers can use text-mining methods to analyze their own data. Emphasizing predictive methods, the book unifies all key areas in text mining: preprocessing, text categorization, information search and retrieval, clustering of documents, and information extraction. In addition, it identifies emerging directions for those looking to do research in the area. Some background in data mining is beneficial, but not essential. Topics and features: * Presents a comprehensive and easy-to-read introduction to text mining * Explores the application and utility of the methods, as well as the optimal techniques for specific scenarios * Provides several descriptive case studies that take readers from problem description to system deployment in the real world * Uses methods that rely on basic statistical techniques, thus allowing for relevance to all languages (not just English) * Includes access to downloadable software (runs on any computer), as well as useful chapter-ending historical and bibliographical remarks, a detailed bibliography, and subject and author indexes This authoritative and highly accessible text, written by a team of authorities on text mining, develops the foundation concepts, principles, and methods needed to expand beyond structured, numeric data to automated mining of text samples. Researchers, computer scientists, and advanced undergraduates and graduates with work and interests in data mining, machine learning, databases, and computational linguistics will find the work an essential resource.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Overview of Text Mining -- From Textual Information to Numerical Vectors -- Using Text for Prediction -- Information Retrieval and Text Mining -- Finding Structure in a Document Collection -- Looking for Information in Documents -- Case Studies -- Emerging Directions.

One consequence of the pervasive use of computers is that most documents originate in digital form. Text mining—the process of searching, retrieving, and analyzing unstructured, natural-language text—is concerned with how to exploit the textual data embedded in these documents. Text Mining presents a comprehensive introduction and overview of the field, integrating related topics (such as artificial intelligence and knowledge discovery and data mining) and providing practical advice on how readers can use text-mining methods to analyze their own data. Emphasizing predictive methods, the book unifies all key areas in text mining: preprocessing, text categorization, information search and retrieval, clustering of documents, and information extraction. In addition, it identifies emerging directions for those looking to do research in the area. Some background in data mining is beneficial, but not essential. Topics and features: * Presents a comprehensive and easy-to-read introduction to text mining * Explores the application and utility of the methods, as well as the optimal techniques for specific scenarios * Provides several descriptive case studies that take readers from problem description to system deployment in the real world * Uses methods that rely on basic statistical techniques, thus allowing for relevance to all languages (not just English) * Includes access to downloadable software (runs on any computer), as well as useful chapter-ending historical and bibliographical remarks, a detailed bibliography, and subject and author indexes This authoritative and highly accessible text, written by a team of authorities on text mining, develops the foundation concepts, principles, and methods needed to expand beyond structured, numeric data to automated mining of text samples. Researchers, computer scientists, and advanced undergraduates and graduates with work and interests in data mining, machine learning, databases, and computational linguistics will find the work an essential resource.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha