TEST - Catálogo BURRF
   

Emotion Recognition using Speech Features / by K. Sreenivasa Rao, Shashidhar G. Koolagudi.

Por: Colaborador(es): Tipo de material: TextoTextoSeries SpringerBriefs in Electrical and Computer Engineering, SpringerBriefs in Speech TechnologyEditor: New York, NY : Springer New York : Imprint: Springer, 2013Descripción: xii, 124 páginas 30 ilustraciones, 6 ilustraciones en color. recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9781461451433
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • TK5102.9
Recursos en línea:
Contenidos:
Introduction -- Speech Emotion Recognition: A Review -- Emotion Recognition Using Excitation Source Information -- Emotion Recognition Using Vocal Tract Information -- Emotion Recognition Using Prosodic Information -- Summary and Conclusions -- Linear Prediction Analysis of Speech -- MFCC Features -- Gaussian Mixture Model (GMM).
Resumen: “Emotion Recognition Using Speech Features” covers emotion-specific features present in speech and discussion of suitable models for capturing emotion-specific information for distinguishing different emotions.  The content of this book is important for designing and developing  natural and sophisticated speech systems. Drs. Rao and Koolagudi lead a discussion of how emotion-specific information is embedded in speech and how to acquire emotion-specific knowledge using appropriate statistical models. Additionally, the authors provide information about using evidence derived from various features and models. The acquired emotion-specific knowledge is useful for synthesizing emotions. Discussion includes global and local prosodic features at syllable, word and phrase levels, helpful for capturing emotion-discriminative information; use of complementary evidences obtained from excitation sources, vocal tract systems and prosodic features in order to enhance the emotion recognition performance;  and proposed multi-stage and hybrid models for improving the emotion recognition performance.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Introduction -- Speech Emotion Recognition: A Review -- Emotion Recognition Using Excitation Source Information -- Emotion Recognition Using Vocal Tract Information -- Emotion Recognition Using Prosodic Information -- Summary and Conclusions -- Linear Prediction Analysis of Speech -- MFCC Features -- Gaussian Mixture Model (GMM).

“Emotion Recognition Using Speech Features” covers emotion-specific features present in speech and discussion of suitable models for capturing emotion-specific information for distinguishing different emotions.  The content of this book is important for designing and developing  natural and sophisticated speech systems. Drs. Rao and Koolagudi lead a discussion of how emotion-specific information is embedded in speech and how to acquire emotion-specific knowledge using appropriate statistical models. Additionally, the authors provide information about using evidence derived from various features and models. The acquired emotion-specific knowledge is useful for synthesizing emotions. Discussion includes global and local prosodic features at syllable, word and phrase levels, helpful for capturing emotion-discriminative information; use of complementary evidences obtained from excitation sources, vocal tract systems and prosodic features in order to enhance the emotion recognition performance;  and proposed multi-stage and hybrid models for improving the emotion recognition performance.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha